29 research outputs found

    Solving robotic kinematic problems : singularities and inverse kinematics

    Get PDF
    Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction. (b) Unbounded joint velocities are required to generate finite linear and angular velocities. Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them. - Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form. The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them. With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra. To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.La cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos

    Solving robotic kinematic problems : singularities and inverse kinematics

    Get PDF
    Aplicat embargament des de la data de defensa fins al 30/6/2019Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction. (b) Unbounded joint velocities are required to generate finite linear and angular velocities. Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them. - Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form. The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them. With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra. To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.La cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos.Postprint (published version

    Dynamical properties of skew-products of operators

    Full text link
    [EN] The Skew-Products are maps of a product space over himself. This maps are defined using operators and maps that fix the probability of sorne elements of a prefix sigma-algebra (the so call ergodic maps). Our purpose is to study the dynamical behavior of this kind of maps and more precisely, the irregular component of this behavior (both discrete and continuous case[ES] Los Skew-Products son aplicaciones de un espacio producto en si mismo, entrando en juego en su definción operadores y aplicaciones que fijan la probabilidad de ciertos sucesos (aplicaciones ergódicas). Nuestro objetivo en este trabajo es estudiar el comportamiento dinámicos de este tipo de aplicaciones y más concretamente su comportamiento irregular (tanto en el caso discreto como en el caso continuo)Zaplana Agut, I. (2013). Dynamical properties of skew-products of operators. http://hdl.handle.net/10251/44847Archivo delegad

    A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis

    Get PDF
    © 2017 Elsevier Ltd This work addresses the inverse kinematic problem for redundant serial manipulators. Its importance relies on its effect in the programming and control of redundant robots. Besides, no general closed-form techniques have been developed so far. In this paper, redundant manipulators are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and parametrizing its joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions for a given pose. Once these joints have been identified several closed-form methods developed for non-redundant manipulators can be applied for obtaining the analytical solutions. Finally, particular instances for the parametrized joints variables are determined depending on the task to be executed. Different criteria and optimization functions can be defined for that purpose.Peer ReviewedPostprint (author's final draft

    Análisis cinemático de robots manipuladores redundantes: Aplicación a los robots Kuka LWR 4+ y ABB Yumi

    Get PDF
    En este trabajo se presenta un análisis cinemático aplicado a dos manipuladores serie redundantes: el Kuka LWR 4+ y el ABB Yumi. En particular, se deriva la cinemática directa para ambos manipuladores y se resuelve el problema de la cinemática inversa. Para el Kuka LWR 4+ dicha solución se obtiene en forma analítica, mientras que para el ABB Yumi se sigue un enfoque analítico y numérico. Además, se calculan simbólicamente tanto las singularidades del Kuka LWR 4+ como las direcciones singulares asociadas a éstas. Este estudio contribuye al conocimiento cinemático de dos manipuladores redundantes de gran actualidad e interés para la comunidad robótica, y proporciona información útil para el diseño de diferentes algoritmos y leyes de control.Postprint (author's final draft

    Singularities of serial robots: identification and distance computation using geometric algebra

    Get PDF
    The singularities of serial robotic manipulators are those configurations in which the robot loses the ability to move in at least one direction. Hence, their identification is fundamental to enhance the performance of current control and motion planning strategies. While classical approaches entail the computation of the determinant of either a 6×n or n×n matrix for an n-degrees-of-freedom serial robot, this work addresses a novel singularity identification method based on modelling the twists defined by the joint axes of the robot as vectors of the six-dimensional and three-dimensional geometric algebras. In particular, it consists of identifying which configurations cause the exterior product of these twists to vanish. In addition, since rotors represent rotations in geometric algebra, once these singularities have been identified, a distance function is defined in the configuration space C , such that its restriction to the set of singular configurations S allows us to compute the distance of any configuration to a given singularity. This distance function is used to enhance how the singularities are handled in three different scenarios, namely, motion planning, motion control and bilateral teleoperation.Peer ReviewedPostprint (published version

    Teleoperating a mobile manipulator and a free-flying camera from a single haptic device

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a novel teleoperation system that allows the simultaneous and continuous command of a ground mobile manipulator and a free flying camera, implemented using an UAV, from which the operator can monitor the task execution in real-time. The proposed decoupled position and orientation workspace mapping allows the teleoperation from a single haptic device with bounded workspace of a complex robot with unbounded workspace. When the operator is reaching the position and orientation boundaries of the haptic workspace, linear and angular velocity components are respectively added to the inputs of the mobile manipulator and the flying camera. A user study on a virtual environment has been conducted to evaluate the performance and the workload on the user before and after proper training. Analysis on the data shows that the system complexity is not an obstacle for an efficient performance. This is a first step towards the implementation of a teleoperation system with a real mobile manipulator and a low-cost quadrotor as the free-flying camera.Accepted versio

    Design of a robotic system for battery dismantling from tablets

    Get PDF
    Due to the rapid increase in sales of mobile electronic devices, the number of batteries ending up in waste electric and electronic equipment (WEEE) is also rapidly increasing. According to the EU legislation, all batteries need to be removed from WEEE, which is currently done manually for tablets, posing potential safety risks for workers and resulting in high processing costs due to the labour intensity of the required dismantling operations. Therefore, a robotic dismantling system is developed in this research to automatically remove both the back covers and batteries from a mixed waste stream of tablets of different models and brands. At the outset of the design process, a total of 47 randomly collected tablets were analyzed to define the location of the battery and the required manual dismantling time. Thereafter, a robotic bending method was tested for removing the back cover. Once the battery is exposed, two different methods are tested: using a heat gun to loosen the glue that fixes the battery to the rest of the tablet and a robotic scraping method with a spatula to mechanically extract the battery. Whereas the required time for only the heating showed to be more than 120s, the results with the bending and scraping tool show that the proposed robotic dismantling system is capable of removing the back cover and battery for 63% of the tested tablets in less than 90s. However, to increase the economic viability and robustness of the proposed method to be able to cope with the high variety in tablet model designs, future work is required to develop algorithms to recognize product models to enable to define and retrieve product specific toolpaths for dismantling.Peer ReviewedPostprint (published version

    Assessing the efficiency of Laser-Induced Breakdown Spectroscopy (LIBS) based sorting of post-consumer aluminium scrap

    Get PDF
    The aluminium Twitch fraction of a Belgian recycling facility could be further sorted by implementing Laser-Induced Breakdown Spectroscopy (LIBS). To achieve this goal, the presented research identifies commercially interesting output fractions and investigates machine learning methods to classify the post-consumer aluminium scrap samples based on the spectral data collected by the LIBS sensor for 834 aluminium scrap pieces. The classification performance is assessed with X-Ray Fluorescence (XRF) reference measurements of the investigated aluminium samples, and expressed in terms of accuracy, precision, recall, and f1 score. Finally, the influence of misclassifications on the composition of the desired output fractions is evaluated.Peer ReviewedPostprint (published version

    A novel strategy for balancing the workload of industrial lines based on a genetic algorithm

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksOne major problem in industrial automation is the workload balancing problem. It consists of making the robots or, more generally, the machines, involved in the assembly process to work exactly the same, either by picking and placing the same number of pieces or by having the same number of operational cycles. This paper presents a novel strategy for solving such a problem by means of an evolutionary algorithm. The specific application of this strategy is to balance the workload of a pick-and-place process developed in the facilities of the industrial company Fameccanica Spa Data within the framework of an industrial project between the company and our research group. The novelties concerning the state-of-the-art contributions are: (1) instead of using an explicit fitness function, the candidate solutions at each iteration are evaluated by using a simulation of the entire process; (2) the parameters optimized are the velocity and acceleration of the robots involved in the line and (3) the strategy includes an algorithm for distributing the workload between the robots during the process.Peer ReviewedPostprint (author's final draft
    corecore